Toric geomety
Wiskunde en Natuurwetenschappen
Vak: \qquad
\qquad
\qquad
\qquad
\qquad
As a \#theonst, I always thought toriz gecencty nas hind of stupid - all the varieties are bral to \mathbb{A}^{n}, so we undestand distribution of rat. pts etc!

Some people warhon varichies that are orly'geometinally to ir: Eph (DPCE), but then generally they don't ue toric methads, so again nopt learnirg $T G$.
Howeres, ~ 3 mths ago this changed, as/realied TG was exathy provilny local models of centain compliated consturtion on $\overline{T g i n}$ (seelaterwechs...).
The hy word in local, erp. in etale top. Then anylNCD gires nie to a local toric strueture.

One mice thing that loy geom. does is to give a machire for worlingw, ett-locally torn thing: (toroidal geom cluesrotoo, but in less flesible -eg only woiv in 'relatire NCD'setting, \& nofuntoroida str on apt!).

So today I will do some toric geom., \& you should bear inmand that loygeom. allow us to use thir as a 'local model for a hige range of situations (eg.whery you hore an NCD)

Ref: Fulton, Toncloparty Vanches.

We worlenelative to a ring R. Megta

Notation

7 dome ? want thin?
Lattre $=$ free \mathbb{Z}-module of finish. (tsgmetin bilinear form) $N=$ lattice, $\simeq \mathbb{Z}^{n}$ some n, tusual inner product.
$M=\operatorname{Hom}_{\mathrm{g}_{p}}(N, \mathbb{Z})$, with dual inner produce $\langle\rightarrow$,$\rangle .$

$$
N_{\mathbb{R}}=N \otimes_{\mathbb{E}} \mathbb{R} \simeq \mathbb{R}^{n}
$$

Cone (connexpolyhedral): aet of the form

$$
\sigma=\left\{r_{1} \underline{v}_{1}+\cdots+r_{s} \underline{v}_{s} \in \mathbb{N}_{\mathbb{R}}: r_{i} \geqslant 0\right\} \text { some } \underline{v}_{1, \ldots} \underline{\iota}_{s} \in \mathbb{N}_{R_{1}}
$$

Such asetot \underline{x}_{i} aícalled a generating st for σ.
$\operatorname{dm} \sigma=\operatorname{dim}(\mathbb{R} \cdot \sigma)$ as real vectorspace.
(\neq dim or as manifold...),
Dual: $\check{\sigma}=\left\{\underline{u} \in M_{R}:\langle\underline{u}, \underline{v}\rangle \geqslant 0 \quad \forall v \in \sigma\right\}$, alsoc.p.cone.

Facts: - If $v_{0} \notin \sigma$ then $\exists u_{0} \in \sigma^{v}$ st. $\left\langle u_{0}, v_{0}\right\rangle<0$.

- $\left(\sigma^{v}\right)^{v}=\sigma$.
$u \in \sigma^{v}$, then $u^{*}=\{v \in \sigma \mid\langle\sigma, v\rangle=0\}$ 'suppotinglygrexploni
Face: $\tau=\sigma \wedge u^{+}, u \in \sigma^{-}$

faces: $\sigma,\{\underline{0}\}$.
faces: \& st them.
facts: foces are abo c.p.cones.
- intersection of faus is face.
face o face \approx i Sace.
baceti= face stcodim 1.
paceti= face of coomin 1.
- Topologival bounday of $\sigma=$ union of proper faces.
lem:(Gortan) $S_{\sigma}:=\sigma^{\nu} \cap \Pi$ is a finitely generated movoid.

Det σ in strongly convex if it contars no nonzers lnearsubspaa

$$
\left(=\log , \sigma Z_{21} \mathbb{R} \cdot \sigma^{2}=M_{R}\right)
$$

Det. Win the affine toric vaiety assocto o is
(Gordan \Rightarrow fin.type).

lem If τ aface ot o then Unget canoural $U_{\tau} \leftrightarrow U_{0}(5)$ Idea: have $\tau \rightarrow \sigma, \sim \sigma^{v} \rightarrow \tau^{v}$, $\rightarrow \sigma^{v} \cap \Pi \rightarrow \tau^{v} n \Pi, \leadsto R\left[\sigma^{n} \wedge \Pi\right] \rightarrow R\left\{\tau^{n} n \mu\right.$ Toric varicties $\otimes u_{\tau} \longrightarrow u_{* \sigma}$
D.t Afan Δ in N is a set A s.c.p. cones $\sigma \frac{c}{A} N_{\mathbb{R}}$ s.t.

- eado Δ clased under tahing faces.
- if $\sigma, \sigma^{\prime} \in \Delta$ then $\sigma_{n} \sigma^{\prime}$ is aface $\mathcal{O}_{\sigma} \sigma$ (sit $\left.\sigma^{\prime}\right)$.

Gren $\operatorname{San} \Delta$, defire tonc-varuety $X(\Delta)$ by taling union of $U_{\sigma}: \sigma \in \Delta$, \& glueing U_{σ} to U_{τ} along $U_{\sigma, t}$ nia abone limma.
logstruetres glue fom attine parts.

$$
\begin{aligned}
& o_{n} U_{0_{1}}=\left\{m_{R}[x, y\}\right. \\
& K_{\sigma_{2}}=R[
\end{aligned}
$$

$$
U_{\sigma_{2}}=\operatorname{Sper} R[a, b]
$$

$$
a=\frac{1}{y}, b=\frac{x}{y}
$$

$$
U_{\sigma_{1}, \sigma_{2}}=\operatorname{Spee} R\left[x, c t, c^{-1}\right]
$$

Glueing

$$
\begin{aligned}
& \begin{aligned}
R[x, y] & \rightarrow R\left[x, c, c^{-1}\right] \\
y & \text {... jurtget } \mathbb{P}_{R}^{2}!
\end{aligned} \\
& R[a, b],
\end{aligned}
$$

Why is it nice to hnow a variety is tor?
(This is intore random appliation, hut it's fun!)
Toric varicties ane alvays voinal \& separated, but may or maynot be regular.

Let'swohorer a perfect field (I'm sure notreeded, but I have $n o t$ cheshed ...).

Redwer to attre case, so σ s.c. p.cone, $U_{\sigma}=$ Spec $h\left[\sigma^{i} n \pi\right]$.
Prop. U_{σ} in regular $\Leftrightarrow \exists$ a generatingset G for σ s.t. G canbe axpanded to a basis for N. $a ' z$-module.

Eg if dm $\sigma=0$ or 1 , regulor.

$$
\& \operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \neq 1
$$

Sope Say σ simphial if it can begen. by $(\operatorname{drm} \sigma)$ elts.
Soregular \Rightarrow simplizial.
Say σ simphial, Let v_{1}, \ldots, v_{n} be fintgens arlony edges, multiphtry mult $(\sigma):=\left[\begin{array}{ll}N_{\sigma} \\ N_{0} & \left.\mathbb{Z} v_{1}+\cdots+Z v_{k}\right] \text {. }\end{array}\right.$
Prop U_{σ} regular $\Leftrightarrow \operatorname{mult}(\sigma)=1 . \quad$ ER N (R. $\sigma \operatorname{in} N$.

